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Characterization of Uniform Microstrip Line
and Its Discontinuities Using the
Time-Domain Method of Lines
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Abstract —The general hnndation and the procednre of the time-

domain method of lines for the analysis of wave scattering and propagation

properties in a planar circuit are described. The results of the time-domain

data and the derived frequency-domain characteristics for the uniform

microstrip fine and its severaf diseontinuities (step, opmr-en~ and gap) are

presented.

I. INTRODUCTION

A N ACCURATE full-wave analysis of a planar trans-

mission line and its discontinuities becomes increas-

ingly important for the design of microwave and millimet-

er-wave circuits as the operating frequency increases. This

is because the quasi-static analysis is not valid in the

high-frequency range and the time-consuming cut-and-try

cycle cannot be used in the monolithic microwave inte-

grated circuit. There are several full-wave approaches for

obtaining the frequency-dependent parameters of a uni-

form transmission line and its discontinuities [1-5]. All of

them are frequency-domain methods. Hence, if a pulsed

signal is considered in a structure, the problem should be

solved at many different frequencies to obtain data for a

wide range of frequencies because a pulse contains a wide

frequency spectrum. The time-domain analysis of mi-

crowave planar transmission structures provides an alter-

native to the frequency-domain approach [6]–[8]. It is

useful for obtaining the characteristics of a uniform trans-

mission line and for calculating the scattering parameters

of its discontinuities for a wide range of frequencies as well

as for studying the behavior of a pulsed signal in structures

such as high-speed digital circuits. Usually, the space is

discretized into three-dimensional mesh at which the field

value is calculated so that a large memory and a long

computation time are required.

Previously, the time-domain method of lines (TDML)

was proposed as a new time-domain technique for the

analysis of planar structures [9], in which the space is

approximated by many lines located only at the two-

dimensional discretization points on the substrate surface.
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Since an analytical solution can be found along each line,

the memory and the computation time can be saved.

However, the method b as been applied only to two-dimen-

sional problems to obtain the scattering data of the irqput

pulse in the time doma~in and the cutoff characteristics in

the frequency domain for planar transmission structures.

In this paper, it is shown that the TDML can be extended

to three-dimensional problems. The time-domain data for

a planar transmission line and its discontinuities can be

obtained by the TDML. From the time-domain results, lthe

frequency-domain characteristics for a wide range of fre-

quencies can be found by the Fourier transform. The

results for a uniform microstrip line and its discontinuities

(step-in-width, open-end, and gap) are presented and com-

pared with available published data.

II. FORMULATION AND PROCEDURE OF THE METHOII

Let us consider the general planar transmission line wiith

discontinuity shown in Fig. 1. In order to apply the TDM.L,

electric walls or magnelic walls need to be placed at bcth

ends of the waveguide so that a resonant structure results.

Fig. 2 shows the top view of the structure with discretiza-

tion points for the y component of electric field, E,. It is

assumed that the structure has spatial symmetry in the x

direction so that the problem can be reduced by a factor

of 2.

A. Discretization

As shown in Fig. 2, the structure is discretized by many

field lines, which are properly placed to satisfy the bound-

ary conditions on the :sidewdls and the end walls. For

example, since the Neumann boundary condition for EY is

applied along sidewall A and the Dirichlet condhion at

sidewall B, the EY points are located away from sidewall A

by one half of Ax and a way from sidewall B by one Ax. It

is known that the edge c)f the rnicrostrip should be located

around Ax/4 in Fig. 2 to satisfy the edge condition [10].

After the discretization of the space, the original field in

the continuous space is approximated by a l~ge number of

line fields at the discreti;~ation points:

Ey(x, y,z, t) ~ [EYk(y, t)]

= [EY,,EY~,...,Evk> ~Y~z~=]z~=]’ (1-)
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Fiz. 1. A xeneraf danar transmission line with discontinuity in a

&elded rect~gnlar waveguide.
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Fig. 2. Top view of the structure shown in Fig. 1 with the proper
dkcretization points for the EY component.

where

k=”i+(j–l)NX, l<i<Nx, l<j<NZ.

B. Expansion of Input Pulse

In the structure shown in Fig. 1 with end walls, a field

distribution at any time t,[EY(y, t)], can be expanded by

modal field distributions, [EY.( y)], as follows:

[~y(y,t)] =z(~.cos@.t+B.sin@.~)[Ey.(y)] (2)
n

where [ ] denotes a column vector whose k th component

represents the field value at the k th discretization line as

shown in (l). Also the subscript n denotes the mode

number. If the structure and the initial input support any

static charge distribution, the dc mode (an = O) should be

included in (2) to obtain the correct time-dcrmain data and

frequency-domain information.
In the expansion (2), the coefficients A. can be deter-

mined by the initial field distribution, [EY(y, t = O)], and

the orthogonal property of the modal fields:

j[ (bE, y,t=O)]’[EY.(Y)] dY

A.= 0

J&wb)r[%b’)]4 “ ‘3)
Also, the B. can be found by the causality condition used

in the time iteration method [11]:

B“ = A~tan( a~At/2) (4)

where

At< min(Ax, Az)/(C~=fi) (5)

and C.= is the maximum wave phase velocity within the

structure.

ln order to find the eigenfrequencies and modal field

distributions of the structure, we borrow the technique

used in the frequency-domain method of lines [12]. In this

technique, the characteristic equation is obtained from the

application of the metallic boundary condition to the

metal strip on the dielectric interface boundary. The equa-

tion is given by (see the Appendix for details)

[::lled=[::llrelp]red=‘Orstaticfie
(6a)

for time-harmonic fields. (6b)

In order to obtain a nontrivial solution of (6b),

det[.Z(@)],ed = O for time-harmonic fields (7)

where the subscript “red” represents the reduced matrices

corresponding to the discretization points on the metal

strip.

After the eigenfrequencies are found, (6a) and (6b) can

be used to obtain the charge distribution, [p]’, and the

current density distributions, [[ .lZ], [ .lX]] ~. The modz!l field

distributions, [EY.( y)], can be derived from these quanti-

ties. It is found that (6a) and (6b) need to be solved by the

QR method [13] to ensure stability of the results.

C. Time-Domain Data and Frequency-Domain

Characteristics

Once procedures described above in subsections A and

B are carried out, all the constants in (2) are determined so

that the behavior of the input pulse at any point at any

time can be calculated. Thersfore, the characteristics of a

circuit can be obtained by observing the propagation and

the scattering of the short initial pulse in the given circuit.

In this paper, we tested four structures: uniform microstrip

line and its three commonly encountered discontinuities

(step-in-width, open-end, and gap).
1) Uniform Microstrip Line: In this case, the transfer

function can be found by

exp[–y(u)(z1+z2)] =~Y(O, z=z2)/~Y(ti, z=zl) (8)

where

y ( 6J) = a( m) + jfl ( u ) = propagation constant of

the uniform microstrip line

VY(6),Z=ZJ

= Fourier transform of [ VY( t, z = Zl)] at a fixed x
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and

~,(u, z=z2)

=Fourier transform of [ ~y ( t, z = Z2)] at a fixed x.

VY( t, z) is a traveling voltage wave defined as the line

integral of EY from the rnicrostrip to the ground plane.

Stable results can be obtained by using this choice of

voltage definition for the calculation of the frequency-

domain characteristics. Also, the effective dielectric con-

stant can be derived from the calculated phase constant, ~,

by

‘eff(@) =B2(@)/Q2Po’o. (9)

The voltage–current definition is used for the character-

istic impedance calculation: Fig. 3. E, configuration beneath a uniform microstrip line (a =2,
b =10, h = 0.635, W= 0.6,35 mm). (a) f = O, (b) f = 40, (c) f = 80, and

z((J)=vy(u, z=zl)/Iz((.d, z==zl) (lo) (d) t= 120 PS.

where the traveling current wave is found by a line integral

of the H field around the microstrip line at z = Z1.

2) Discontinuities: In order to obtain the frequency-

dependent scattering parameters of the discontinuity, the

incident wave, EY,i.C and the reflected wave, EY,,ef, should

be calculated at some point on the input observation

plane, Zl, and the transmitted wave, EY,ti,, at the corre-

sponding point on the output observation plane, Zz. Then,

the power ratio S parameter is given by

ASII(Q) = [~y,ref (ti~ ‘l)/ vy,inc (~, z1)]exp{2y1(u)z1}

(11)

( )~m\Vy,irrc(u “2)/m]S.,2~(6J)= [Vy,trs ‘~z2

exp{yl(o)zl +y2(a)z2} (12)

where yl( ~ ) and Y2(~) are the propagation constants of

the uniform microstrip lines connected to each port of the

discontinuity.

III. RESULTS AND DISCUSSION

In this paper, we study four structures on alumina

subtrate (~, = 9.6, h = 0.635 or 0.7 mm) shielded by rect-

angular waveguide (a = 2, b =10, and c = 45 mm). They

are a uniform microstrip line and its discontinuities (step-

in-width, open-end, and gap). In the calculation of the

variation of the fields in the time domain, we have used

the following numbers of discretization points:

number of discretized points in x direction

= 20(Ax = 0.095 mm)

number of dkicretized points in z direction

= 1OO(AZ = 0.445 mm)

number of modes= 20

Fig. 3 shows the pulse propagation along the uniform

microstrip (k = 0.635, W= 0.635 mm) in the time domain.

Fig. 4 shows the effective dielectric constant (~,ff ) ob-

tained by using the Fourier transform of the time-domain

data of a uniform microstrip line in a rectangular wave-

Fig.
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4. Effective dielectric constant of the uniform microstnp line (b=

10, h = 0.635 [mm], <1==1 and (z= 9.6)obtained by TDML:

+
TDML -- curve-fit formula [1] (open structure;).

guide with two different widths. The results show that the

narrow waveguide reduces the effective dielectric constant.

Fig. 5 shows the characteristic impedance (Zo) of a

uniform microstrip line in a rectangular waveguide with

two different widths. The results agree well with those

from the closed-form formula given in [14] if the sidewall

is sufficiently away from the edge of the microstrip line.

However, the impedance is lowered by the sidewall if it is

near the edge of the microstrip line.

Fig. 6 shows the scattering of the pulse at a microstrip

step discontinuity in the time domain. Using (11) and (1;!),

the frequency-domain characteristics can be extracted from

the time-domain data. Fig. 7 shows the frequency-depen-

dent scattering parameters of the given structure with the

available published data [5].

Figs. 8 and 9 show the scattering of pulse at the mi-

crostrip (h. = 0.7, W= 0.7 mm) open end and gap (s = 0.35

mm) in the time domain, respectively. The frequenqy-

dependent scattering parameters derived from the time-do-

ptain data are shown in Figs. 10 and 11 with the FDTD

results reported in [8]. Tlhey agree reasonably well with [8],

although our results show some undulation due to the
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Fig. 5. Characteristic impedance for the uniform microstrip line shown

in Fig. 3 (b =10, h = 0.635 [mm], c1 =1 and [z = 9.6):

s- TDML + curve-fit formula [1] (open structure).

(a)

(c)

(b)

Fig. 6. E,, configuration beneath J discontinuity (a =2, b =10,

W1 = 1.27, kv2 = 0.635 mm). (a) ‘ –”, (b) t = 40, (c) t= 80, and (d)

t = 120 ps.
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Fig. 7. Scattering parameters (S]l, S12) for the symmetric step disconti-
nuity shown in Fig 2(a = 2, b =10, W = 0.3175, W2 = 0.635 [mm],
Cl=l and c~ = 9.6).

+,s11

+ .s21 ‘DML ~:;l ‘ef” [51”

(4 . (b)

Fig. 8. E,, configuration beneath a microstrip open-end discontinuity
(a= 2, 6 =10, W= 0.7 mm). (a) i = O, (b) t = 80, (c) t =120, and (d)
t = 200 ps.

(a) (b)

Fig. 9. E,, configuration beneath a microstrip gap discontinuity (a= 2,
b =10, h = 0.7, W= 0.7, and s = 0.35 mm). (a) t = O, (b) t = 40, (c)
t = 80, and (d) t =120 pS.
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Fig. 11. The magnitudes of s11 and S21 for a microstrip gap disconti-
mrity (CZ = 9.6, h = 0.7 [mm], w/h =1, and s/h= 0.5):
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present method ~ H [8]

discretization error and the truncation of the time-domain

data [15]. It is believed that the error can be reduced by

using a nonuniform discretization scheme and a proper

window function in the FFT procedure.

IV. CONCLUSION

It has been demonstrated that the time-domain method

of lines is a reliable and efficient method for dealing with

pulse propagation and discontinuity problems in planar

transmission lines. This is an extension of the two-dimen-

sional results reported earlier. It was found that the dc

mode should be included in the calculation to obtain the

correct results and that the field can be described accu-

rately by proper placement of the discretized EV field

points near the edge of the microstrip line. Also, the

frequency-domain characteristics obtainecl from the time-

domain data have been made more stable by applying the

QR algorithm in the eigenmode determination and by

using integrated field quantities in the extraction of fre-

quency-domain parameters. The method can be applied to

various planar structures.

APPENDIX

In the three-dimensional problem shown in Fig. 1, all six

field components should be considered to satisfy the

boundary conditions. Usually, two scalar potentials,

*’(x, y, z, t) and W~(x, y, z, t), are introduced to simplify

the formulation instead of considering all six field compo-

nents. The fields can be derived from the solution of two

scalar potentials. The equations for the potentials are given

by

az+ydxz+azvjayz+ a2w/az2-p6 (y)a2w/at2=o
(Ala)

a2*~ax2+a2*h/dy 2+a29h/az2–pc(y )a2*h/at2=o.
(Alb)

2055

Using the separation of variables technique, T(-z, y, z, t)

= +(x, y, z) T(t), the time-dependent solution is of the
form

T(t) = Acos(tit) +llsin(at). (A2)

The space-dependent equations are given by

d 2tJe/8x2 + d 2* ’/i)y2 + 6’2~e/az2 + CJzpC(y)+’ = 0
(A3a)

a‘yh/axz + a2@z/61y2+ a2+h/az2+ JP6( y) *h = o.
(A3b)

After the discretization of the space as shown in Fig. 2,

(A3a) and (A3b) can idso be discretized:

dz[+el ~ [DN][W4 [W[D;~]’

ayz Axz 4

a2[$h] + [D&N] [4hl

ay2 Axz – +

where the matrices [ +’~

AZ2

+ ~zpt(y)[~’] = [0] (A4a)

[*’] [%?N]*

AZ2

+ CO2pC(y)[rJJh] = [0] (A4b)

and I rlh 1 are two-dimensional

arrays whose ijth element represents the potential of the

ijth line. The matrices [D~~], [D~N], [Dfl~], and [D~N]

are the second order difference matrices incorporating the

sidewall boundary conditions [12], [16].

Since the matrices [DX~D], [D:!’], [Dz~~], and [D,~N] are

real symmetric matrices, they can be diagonalized by ap-

propriate transformation matrices. The potentials can also

be transformed into the “transformed potentials.”

[u] = [Ty]’[+’][pq (A,5a)

[v] = [T:~]’[@] [T’””] (A5b)

where the matrices [ T.LYD] and [ T=ND] are the transforma-

tion matrices used for the diagonalization of the- secolnd-

order difference matrices [12]. Then, (A4a) and (A4b) are

transformed into

az[u] [d:~][uj+ [LT][dgf]t

ayz + AX2 AZ2
+Npc(y)u=[o]

(A6a)

awl + [L@]uq+[v][49]’
ayz Axz AZ2

+L@(y)[.v] = [0]

(A6b) “

where [ d~xD], [d~xN ], [ d2~D], and [d=~N] are the diagonalized
matrices of the second-order difference matrices [12]. ‘rhe

boundary conditions are given in the transformed domain

as follows:

[U]=o aty=O, b (A7a)

a[v]ia~=o aty=O, b. (A7b)
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Aty=h,

1 [d:D][u,Il[L?D]’ + ~[~111 [.,
— .— (A7c)

jticO AXAZ ay

1 [d~D]’[V1][dYD] +Wl

jtipo AXAZ ay

where the subscript I and II in the potentials represent the

two regions. The matrices [ d~~] and [ d~D ] are the diago-

nalized matrices of the first-order difference matrices [12].

Notice that (A6a) and (A6b) are uncoupled. The general

solution of the ij th line which satisfies the boundary

conditions (A7a) and (A7b) can be obtained:

~,,j = AI,l, sinh KI, ZJyu (A8a)

u11,IJ H ,Jsinh%,z,(b - Y)=A , (A8b)

~,,1 = BI,,~coshqI, Z,yv (A8c)

v II, IJ =B
I,>vcOshhz,(b -Y)

(A8d)

where

By means of these solutions, the derivatives of U and V

with respect to y at y = h can be represented by the values

of U and V at y = h. Equations (A7c)–(A7f) have six

unknowns: U1,,1, U1l, ~j, ~,,, V1l, i~, Jx ,,, and Jz,,j atv
y = h. Therefore, the continuity equation; in (A7c)-(A7f)

can be used to solve for the potentials U1,~J, U1l, ZJ, v I,IJ,

and VII,,, at y = h in terms of the current densities Jx,,~

and J,, ,1.

On the other hand, the filed values at y = h can be

found by using the following relations evaluated at y = h:

– q,, tanhq,JhK, (Y) (Aloa)
d;? a1,

~(y)=~—

dDN

—q,(y)–fry,(y)
“w(y) Az a~

(AIOb)

Equations (AIOa) and (A1OC) can be expressed in the

following form:

where the [ Z]’s are diagonal matrices if the field and

current matrices [ EY], [E, ], [ Jx], and [J=] are written in

vector notation according to (l).

Now, the final boundary condition is that the tangential

electric fields should be zero on the metal strip. In order to

apply this condition, we need to go back to the original

domain using the inverse transformation relation. Equa-

tion (All) can be inverse transformed. Then, the reduced

matrix can be obtained by deleting the rows and columns

corresponding to the non-metallization lines from the full

matrix:

Equation (A12) will have nontrivial solutions at the reso-

nant frequencies of the structure only, The resonant fre-

quencies are found from the determinant equation

[

[Z-==l [z:..]

‘et [Zy=] 1[-%] ,e~
= [0]. (A13)

For the dc case, a similar procedure can be applied to

the Poisson equation and the boundary conditions of elec-

trostatic field to obtain (6a).
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