NAM et al.: CHARACTERIZATION OF UNIFORM MICROSTRIP LINE

2051

Characterization of Uniform Microstrip Line
and Its Discontinuities Using the
Time-Domain Method of Lines

S. NAM, HAO LING, MEMBER, IEEE, AND TATSUO ITOH, FELLOW, IEEE

Abstract —The general formulation and the procedure of the time-
domain method of lines for the analysis of wave scattering and propagation
properties in a planar circuit are described. The results of the time-domain
data and the derived frequency-domain characteristics for the uniform
microstrip line and its several discontinuities (step, open-end, and gap) are
presented.

1. INTRODUCTION

N ACCURATE f{ull-wave analysis of a planar trans-

mission line and its discontinuities becomes increas-
ingly important for the design of microwave and millime-
ter-wave circuits as the operating frequency increases. This
is because the quasi-static analysis is not valid in the
high-frequency range and the time-consuming cut-and-try
cycle cannot be used in the monolithic microwave inte-
grated circuit. There are several full-wave approaches for
obtaining the frequency-dependent parameters of a uni-
form transmission line and its discontinuities [1-5]. All of
them are frequency-domain methods. Hence, if a pulsed
signal is considered in a structure, the problem should be
solved at many different frequencies to obtain data for a
wide range of frequencies because a pulse contains a wide
frequency spectrum. The time-domain analysis of mi-
crowave planar transmission structures provides an alter-
native to the frequency-domain approach [6]-[8]). It is
useful for obtaining the characteristics of a uniform trans-
mission line and for calculating the scattering parameters
of its discontinuities for a wide range of frequencies as well
as for studying the behavior of a pulsed signal in structures
such as high-speed digital circuits. Usually, the space is
discretized into three-dimensional mesh at which the field
value is calculated so that a large memory and a long
computation time are required.

Previously, the time-domain method of lines (TDML)
was proposed as a new time-domain technique for the
analysis of planar structures [9], in which the space is
approximated by many lines located only at the two-
dimensional discretization points on the substrate surface.
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Since an analytical solution can be found along each line,
the memory and the computation time can be saved.
However, the method has been applied only to two-dimen-
sional problems to obtain the scattering data of the input
pulse in the time domain and the cutoff characteristics in
the frequency domain for planar transmission structures.
In this paper, it is shown that the TDML can be extended
to three-dimensional problems. The time-domain data for
a planar transmission line and its discontinuities can be
obtained by the TDML. From the time-domain results, the
frequency-domain characteristics for a wide range of fre-
quencies can be found by the Fourier transform. The
results for a uniform microstrip line and its discontinuities
(step-in-width, open-end, and gap) are presented and com-
pared with available published data.

II. FORMULATION AND PROCEDURE OF THE METHOD

Let us consider the general planar transmission line with
discontinuity shown in Fig. 1. In order to apply the TDML,
electric walls or magnetic walls need to be placed at both

.ends of the waveguide so that a resonant structure results.

Fig. 2 shows the top view of the structure with discretiza-
tion points for the y component of electric field, E,. It is
assumed that the structure has spatial symmetry in the x
direction so that the problem can be reduced by a factor
of 2.

A. Discretization

As shown in Fig. 2, the structure is discretized by many
field lines, which are properly placed to satisfy the bound-
ary conditions on the sidewalls and the end walls. For
example, since the Neumann boundary condition for E, is
applied along sidewall A and the Dirichlet condition at
sidewall B, the E, points are located away from sidewall A
by one half of Ax and away from sidewall B by one Ax. It
is known that the edge of the microstrip should be located
around Ax/4 in Fig, 2 to satisfy the edge condition [10].
After the discretization of the space, the original field in
the continuous space is approximated by a large number of
line fields at the discretization points:

Ey(x’ y,z,t) - [Eyk(y7t)]

=[ s Eyaseees (1)

t
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Fig. 1. A general planar transmission line with discontinuity in a

shielded rectangular waveguide.
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Fig. 2. Top view of the structure shown in Fig. 1 with the proper
discretization points for the E, component.

where

k=i+(j—1)N,, 1<i<N,,

X

1< j<N,.

z

B. Expansion of Input Pulse

In the structure shown in Fig. 1 with end walls, a field
distribution at any time ¢, [E (y, )], can be expanded by
modal field distributions, [E,,(y)], as follows:

[E,(». t)] = Z(AncosQnt +B, sinw,?t)[Eyn(y)] 2

where [ ] denotes a column vector whose kth component
represents the field value at the kth discretization line as
shown in (1). Also the subscript n denotes the mode
number. If the structure and the - initial input support any
static charge distribution, the dc mode (w,; = 0) should be
included in (2) to obtain the correct time-domain data and
frequency-domain information.

In the expansion (2), the coefficients 4, can be deter-
mined by the initial field distribution, [E, (y, = 0)], and
the orthogonal property of the modal fields:

f:[la(y,t==0ﬂ'[l%n(y)]dy

L TEM)] ()]

Also, the B, can be found by the causality condition used
in the time iteration method [11]:

B, = A, tan(w,At/2)

(4)
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where
At < min(Ax, Az) /(Crpad/3) Q)

and C,,, is the maximum wave phase velocity within the
structure.

In order to find the eigenfrequencies and modal field
distributions of the structure, we borrow the technique
used in the frequency-domain method of lines [12]. In this
technique, the characteristic equation is obtained from the
application of the metallic boundary condition to the
metal strip on the dielectric interface boundary. The equa-
tion is given by (see the Appendix for details)

”,[Ez]} _ {[GA
1E1]., " [16.]

[E.]

[ ] =[[zu]
E] | [[Z]

In order to obtain a nontrivial solution of (6b),

det] Z(w)],eq =0

for static fields

(62)

(o] =[0]
(z.1] [12]]
[2..] red[[fx]Ld‘ Lol

for time-harmonic fields.

(6b)

for time-harmonic fields  (7)

where the subscript “red” represents the reduced matrices
corresponding to the discretization points on the metal
strip. :

After the eigenfrequencies are found, (6a) and (6b) can
be used to obtain the charge distribution, [p]’, and the
current density distributions, [[J,], [/,]]". The modal field
distributions, [E, ()], can be derived from these quanti-
ties. It is found that (6a) and (6b) need to be solved by the
QR method [13] to ensure stability of the results.

C. Time-Domain Data and Frequency-Domain
Characteristics

Once procedures described above in subsections A and
B are carried out, all the constants in (2) are determined so
that the behavior of the input pulse at any point at any
time can be calculated. Therefore, the characteristics of a
circuit can be obtained by observing the propagation and
the scattering of the short initial pulse in the given circuit.
In this paper, we tested four structures: uniform microstrip
line and its three commonly encountered discontinuities
(step-in-width, open-end, and gap).

1) Uniform Microstrip Line: In this case, the transfer
function can be found by

exp[ - Y(‘*’)(Z1 + Zz)] = I/y(w7 z= Zz)/Vy(“” z= Zl) (8)
where .
¥(w) =a(w)+ jB(w) = propagation constant of
the uniform microstrip line

Vy(w,z =

z;)

= Fourier transform of [Vy(t, z= zl)] at a fixed x
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and

I/ty(w’ z= 22)
=-Fourier transform of [ V,(t,z= z2)]at a fixed x.

V,(#,z) is a traveling voltage wave defined as the line
integral of E, from the microstrip to the ground plane.
Stable results can be obtained by using this choice of
voltage definition for the calculation of the frequency-
domain characteristics. Also, the effective dielectric con-
stant can be derived from the calculated phase constant, S,
by

€eff("") =:32("’)/‘*’2#o‘o- (9)

The voltage—current definition is used for the character-
istic impedance calculation:

Z(w)=V,(0,z=2)/I(0,z=2) (10)

where the traveling current wave is found by a line integral
of the H field around the microstrip line at z = z,.

2) Discontinuities: In order to obtain the frequency-
dependent scattering parameters of the discontinuity, the
incident wave, E, ;.. and the reflected wave, E, ., should
be calculated at some point on the input observation
plane, z,, and the transmitted wave, E, ., at the corre-
sponding point on the output observation plane, z,. Then,
the power ratio S parameter is given by

Si(w) = [I/y.ref(w7 Zl)/V;,inc(w’ Zl)]exp{zYl(w)Zl}

(11)
Su(w) = [Vy,trs("-” Zz)vzm(‘*’) /Vy,inc(w’ Zz)vzoz(‘*’) ]

eXP{Yl(“’)Zl"‘ 'Y?.(‘*’)Zz} (12)

where y;(w) and v,(w) are the propagation constants of
the uniform microstrip lines connected to each port of the
discontinuity.

III.

In this paper, we study four structures on alumina
subtrate (¢, =9.6, #=0.635 or 0.7 mm) shielded by rect-
angular waveguide (a =2, b=10, and c= 45 mm). They
are a uniform microstrip line and its discontinuities (step-
in-width, open-end, and gap). In the calculation of the
variation of the fields in the time domain, we have used
the following numbers of discretization points:

RESULTS AND DISCUSSION

number of discretized points in x direction
=20(Ax = 0.095 mm)

number of discretized points in z direction
=100(Az = 0.445 mm)

number of modes = 20

Fig. 3 shows the pulse propagation along the uniform
microstrip (= 0.635, W = 0.635 mm) in the time domain.
Fig. 4 shows the effective dielectric constant (e.;) ob-
tained by using the Fourier transform of the time-domain
data of a uniform microstrip line in a rectangular wave-
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Fig. 3. E, configuration beneath a uniform microstrip line (a =2,
b=10, h=0.635, W=10.635 mm). (a) t =0, (b) =40, (c) 1 =80, and
(d) =120 ps.
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Fig. 4. Effective dielectric constant of the uniform microstrip line (b=
10, h = 0.635 [mm], ¢; =1 and ¢, = 9.6) obtained by TDML:
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TDML
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—-  curve-fit formula [1] (open structure).

guide with two different widths. The results show that the
narrow waveguide reduces the effective dielectric constant.

Fig. 5 shows the characteristic impedance (Z;) of a
uniform microstrip line in a rectangular waveguide with
two different widths. The results agree well with those
from the closed-form formula given in [14] if the sidewall
is sufficiently away from the edge of the microstrip line.
However, the impedance is lowered by the sidewall if it is
near the edge of the microstrip line.

Fig. 6 shows the scattering of the pulse at a microstrip
step discontinuity in the time domain. Using (11) and (12),
the frequency-domain characteristics can be extracted from
the time-domain data. Fig. 7 shows the frequency-depen-
dent scattering parameters of the given structure with the
available published data [5].

Figs. 8 and 9 show the scattering of pulse at the mi-
crostrip (A = 0.7, W= 0.7 mm) open end and gap (s =0.35
mm) in the time domain, respectively. The frequency-
dependent scattering parameters derived from the time-do-
main data are shown in Figs. 10 and 11 with the FDTD
results reported in [8]. They agree reasonably well with [§],
although our results show some undulation due to the
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discretization error and the truncation of the time-domain
data [15]. It is believed that the error can be reduced by
using a nonuniform discretization scheme and a proper
window function in the FFT procedure.

1IV. CONCLUSION

It has been demonstrated that the time-domain method
of lines is a reliable and efficient method for dealing with
pulse propagation and discontinuity problems in planar
transmission lines. This is an extension of the two-dimen-
sional results reported earlier. It was found that the dc
mode should be included in the calculation to obtain the
correct results and that the field can be described accu-
rately by proper placement of the discretized E, field
points near the edge of the microstrip line. Also, the
frequency-domain characteristics obtained from the time-
domain data have been made more stable by applying the
QR algorithm in the eigenmode determination and by
using integrated field quantities in the extraction of fre-
quency-domain parameters. The method can be applied to
various planar structures.

APPENDIX

In the three-dimensional problem shown in Fig. 1, all six
field components should be considered to satisfy the
boundary conditions. Usually, two scalar potentials,
¥e(x, y,z,t) and ¥/(x, y, z, t), are introduced to simplify
the formulation instead of considering all six field compo-
nents. The fields can be derived from the solution of two
scalar potentials. The equations for the potentials are given
by

I2WY/Ix24+ 32 /Jy2 4+ 32U /322 — pe(y) d2¥¢/3t2 =0
(Ala)

A2¥ax 4+ 2 /dy?+ 92 ¥" /92  —pe(y)d* ¥t /3t? = 0.
(A1b)
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Using the separation of variables technique, ¥(x, y, z, t)
=4Y(x, y,z)T(1), the time-dependent solution is of the
form

T(t) = Acos(wt)+ Bsin(wt). (A2)
The space-dependent equations are given by
0N/ Ix*+ 0N y? + AN /2% + wie(y) P =0
(A3a)
IWE/Ax+ N /3y* + a9z + wpe(y) " =0.
(A3b)

After the discretization of the space as shown in Fig. 2,
(A3a) and (A3b) can also be discretized:

2Lyl [DXP][y¢] . [v1[DXP]’
ay* Ax? Az?

+wpe(y)[¥e] = [0]

[yl (o2 [v[ea]
dy? Ax? Az?

+wie(y)[¢"] =[0] (Adb)

where the matrices [¢°] and [¢"] are two-dimensional
arrays whose ijth element represents the potential of the
ijth line. The matrices [DXP), [D2N], [DXP], and [D2Y
are the second order difference matrices incorporating the
sidewall boundary conditions [12], [16].

Since the matrices [DYP], [D2V], [DXP], and [ DPV] are
real symmetric matrices, they can be diagonalized by ap-
propriate transformation matrices. The potentials can also
be transformed into the “transformed potentials.”

[U]=[1"] [y][ 7]

t
V1= [2"] " [¥'][72"]
where the matrices [TVP] and [T¥P] are the transforma-
tion matrices used for the diagonalization of the second-

order difference matrices [12]. Then, (Ada) and (A4b) are
transformed into

2] [aeli] | wia)
ay? Ax? Az?

(Ada)

(ASa)
(ASb)

+o’ne(y)U=1[0]

(A6a)

UL L0 T -
(A6b)"

where [dY¥P], [dPN], [dYP], and [d2V] are the diagonalized
matrices of the second-order difference matrices [12]. The
boundary conditions are given in the transformed domain

as follows:
[U]=0
a[v]/ay=0

(A7a)
(ATb)

at y=0,b
at y=0,b.
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At y=h,
1 [aru[a”]’
Jwegg AxAz
1 [aX?][ua)[]'
Jjweg AxAz

[U:][a2P]’
Az?

V]
-5
[Vl
dy

= [0]

(A7c)
1
Jwegg

1 ([UH][dZD]’

Jweg Az?

+ "’Zﬂofrfo[UI]

+ wiego[Unl (A7d)

= [0]

1 [dND]
Joko

[a”]
AxAz

CARYY
dy
1 [dP] [vy)[dr?]
B Jwhg AxAz

[Vi}[d2N]
Az?

1 [ [vyl[a2]'
Jwkto Az?

B d{Unl
dy

= —[ ~] (A7e)

1
Jwp

+ w’ee €0 V1]

+@pogo[Vul | = [J;] (A7f)

where the subscript I and II in the potentials represent the
two regions. The matrices [d "] and [d'"] are the diago-
nalized matrices of the first-order difference matrices [12].

Notice that (A6a) and (A6b) are uncoupled. The general
solution of the jjth line which satisfies the boundary
conditions (A7a) and (A7b) can be obtained:

Uy, = Ay, sinhky,,y (A8a)
UHU=AH‘Usinth‘”(b—y) (A8b)
Vi, =By, coshyy, v (A8c)
Vi, =By, coshny , (b= y) (A8d)
where
ki, =— [dxx /Ax?+dNP Az + w2u€r60] (A9a)
kb, =—d¥P /Ax? +dNP /AZ + w'ne,|  (A9D)
1., = [dﬁN,/Ax +dPN /AZ? + wpe 50] (A9c)
M., = — [dEN,/Ax? + dB¥ /Az? + wPpe,|. (A9d)

By means of these solutions, the derivatives of U and V'

with respect to y at y = h can be represented by the values
of U and V at y=h. Equations (A7c) —(A7f) have six
unknowns: Uy, ,, Uy, Vi,p Viip J " and J,,
y = h. Therefore, the continuity equations in (A7¢)— (A7f)
can be used to solve for the potentials Uy ,,, Uy, ,, V1,
and Vy;,, at y="h in terms of the current densities J, ,
and J,

z,0"
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On the other hand, the filed values at y=~h can be
found by using the following relations evaluated at y = h:

1 dNDdND

Ex,zj(y):jwe(y) ;;AZJUU()})
m,,tanhy, 2V, (y) (Al0a)
1 49 ary
),,())—]we(y) As 3y U,(») =5 Vur)

(A10b)

E0) = | 522 e U (). (10

Equations (A10a) and (A1l0c) can be expressed in the
following form:

2] (7 @@ .
=7z = lm

where the [Z]'s are diagonal matrices if the field and
current matrices [E ], [E,], [J.], and [J,] are written in
vector notation according to (1).

Now, the final boundary condition is that the tangential
electric fields should be zero on the metal strip. In order to
apply this condition, we need to go back to the original
domain using the inverse transformation relation. Equa-
tion (A11) can be inverse transformed. Then, the reduced
matrix can be obtained by deleting the rows and columns
corresponding to the non-metallization lines from the full
matrix:

[E.] (z.,] [2.] [] -
[E] . [[Z.] [Z.] red[[ x]}red—[O]. (A12)

Equation (A12) will have nontrivial solutions at the reso-
nant frequencies of the structure only, The resonant fre-
quencies are found from the determinant equation

[ZZZ] [sz] — [O]
[ Zx: ] [ Zxx] red .
For the dc case, a similar procedure can be applied to

the Poisson equation and the boundary conditions of elec-
trostatic field to obtain (6a).

det (A13)
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